metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$(\mu-4,4'-Bipyridyl-\kappa^2N:N')$ bis[bis(tri-tertbutoxysilanethiolato- κ^2 S.O)cadmium(II)] toluene disolvate

Anna Dołega, Katarzyna Baranowska* and Agnieszka Pladzyk

Department of Chemistry, Technical University of Gdańsk, 11/12 G. Narutowicz Street, 80952 - PL Gdańsk, Poland Correspondence e-mail: kasiab29@wp.pl

Received 9 November 2007; accepted 12 November 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.027; wR factor = 0.082; data-to-parameter ratio = 17.2.

The structure of the title compound, $[Cd_2(C_{12}H_{27}O_3SSi)_4 (C_{10}H_8N_2)]$ ·2C₇H₈, consists of discrete molecules, with the two halves of the complex molecule related to each other by inversion symmetry. Two (tri-tert-butoxysilanothiolato)cadmium units are bridged through the 4.4'-bipyridyl ligand. The geometry of the Cd^{II} atoms is intermediate between square-pyramidal and trigonal-bipyramidal. The solvent toluene molecules pack in the voids between the mid-point of the 4,4'-bipyridine and the tert-butyl groups of an adjacent complex. There is disorder in the 4,4'-bipyridine molecule, with site occupancies of 0.506 (7):0.494 (7).

Related literature

For an analogous compound as the THF solvate, see: Pladzyk et al. (2007). For the synthetic procedure, see: Wojnowski et al. (1992).

Experimental

Crystal data

[Cd2(C12H27O3SSi)4(C10H8N2)]-- $2C_7H_8$ $M_r = 1683.2$ Monoclinic, $P2_1/c$ a = 9.8095 (2) Å b = 19.4290 (5) Å c = 23.1842 (6) Å

Data collection

Oxford Diffraction KM-4 CCD diffractometer Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) $T_{\min} = 0.962, T_{\max} = 1.056$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	453 parameters
$wR(F^2) = 0.082$	H-atom parameters constrained
S = 1.17	$\Delta \rho_{\rm max} = 0.88 \ {\rm e} \ {\rm \AA}^{-3}$
7785 reflections	$\Delta \rho_{\rm min} = -0.4 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd1-N1	2.3097 (18)	Cd1-O1	2.5137 (13)
Cd1-S2	2.4462 (5)	Cd1-O4	2.5384 (13)
Cd1-S1	2.4560 (5)		
N1-Cd1-S2	106.15 (5)	\$1-Cd1-O1	73.18 (3)
N1-Cd1-S1	104.61 (5)	N1-Cd1-O4	91.19 (5)
S2-Cd1-S1	149.156 (19)	S2-Cd1-O4	72.67 (3)
N1-Cd1-O1	90.80 (6)	S1-Cd1-O4	109.03 (3)
S2-Cd1-O1	104.03 (4)	O1-Cd1-O4	176.53 (5)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was undertaken with financial support from the Polish State Committee, grant No. 3T09A 12028. The authors thank Dr Jarosław Chojnacki for helpful comments.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2366).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.9. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Pladzyk, A., Dołęga, A. & Baranowska, K. (2007). Acta Cryst. E63, m1434m1436
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wojnowski, W., Becker, B., Walz, L., von Peters, E.-M. & Schnering, H. G. (1992). Polyhedron, 11, 607-612.

V = 4405.89 (18) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.68 \text{ mm}^{-1}$ T = 120 (2) K $0.14 \times 0.10 \times 0.08 \text{ mm}$

 $\beta = 94.355 \ (2)^{\circ}$

27639 measured reflections 7785 independent reflections 6924 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$

Acta Cryst. (2007). E63, m3072 [doi:10.1107/S1600536807057947]

$(\mu$ -4,4'-Bipyridyl- $\kappa^2 N$:N')bis[bis(tri-*tert*-butoxysilanethiolato- $\kappa^2 S$,O)cadmium(II)] toluene disolvate

A. Dolega, K. Baranowska and A. Pladzyk

Comment

The asymmetric unit of (I) consists of one half-molecule of the complex and one toluene molecule. An inversion centre is located at the mid-point of the bridging C—C bond of the 4,4'-bipyridine, at Wyckoff position c (0,1/2,0). The 4,4'-bipy rings in compound (I) exhibit deviation from planarity, which is most probably "artificial" effect resulting from the disorder of the bipyridine moiety. The environment of the Cd can be approximated either to trigonal–bipyramidal or square pyramidal, but distortions are found for both approximations. Molecules of (I) pack in the crystal structure as discrete entities with no interactions other than van der Waals. Also position of solvating toluene is such that no pi-pi stacking can be considered.

Experimental

Compound (I) was synthesized from dimeric cadmium bis(tri-*tert*-butoxysilanethiolate) (Wojnowski *et al.* 1992). Cadmium bis(tri-*tert*-butoxysilanethiolate) (1.00 g; 0.75 mmol) was suspended in ethanol (40 ml). 4,4'-bipyridine (0.23 g, 1,5 mmol) and toluene (8 ml) were added to the suspension and the reaction mixture was heated for 1 h. The solution, kept at 269 K, yielded colourless needles suitable for X-ray analysis after approx. one month.

Refinement

All C—H hydrogen atoms were refined as riding on carbon atoms with methyl C—H = 0.98 Å, aromatic C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic CH and $1.5U_{eq}(C)$ for methyl groups. Atoms C25–C26, and C28–C29 in the 4,4'-bipyridine molecule is disordered (0.506 (7)/0.494 (7)).

Figures

Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

$(\mu-4,4^{+}-Bipyridyl-\kappa^2N:N^{+})bis[bis(tri-tert-butoxysilanethiolato-\kappa^2S,O)cadmium(II)]$ toluene disolvate

 $F_{000} = 1780$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.1 - 32.5^{\circ}$

 $\mu = 0.68 \text{ mm}^{-1}$

T = 120 (2) K

Prism, colourless

 $0.14 \times 0.10 \times 0.08 \text{ mm}$

 $D_{\rm x} = 1.269 {\rm Mg m}^{-3}$ Mo Kα radiation

Cell parameters from 27489 reflections

Crystal data

 $[Cd_2(C_{12}H_{27}O_3SSi)_4(C_{10}H_8N_2)]\cdot 2C_7H_8$ $M_r = 1683.2$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 9.8095 (2) Å b = 19.4290 (5) Å c = 23.1842 (6) Å $\beta = 94.355 \ (2)^{\circ}$ $V = 4405.89 (18) \text{ Å}^3$ Z = 2

Data collection

Oxford Diffraction KM4 CCD diffractometer	7785 independent reflections
Monochromator: graphite	6924 reflections with $I > 2\sigma(I)$
Detector resolution: 8.1883 pixels mm ⁻¹	$R_{\rm int} = 0.021$
T = 120(2) K	$\theta_{\text{max}} = 25.1^{\circ}$
ω scans, 0.70 deg width	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006)	$h = -11 \rightarrow 11$
$T_{\min} = 0.962, \ T_{\max} = 1.056$	$k = -23 \rightarrow 23$
27639 measured reflections	$l = -15 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.082$	$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2 + 1.2954P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.17	$(\Delta/\sigma)_{\text{max}} = 0.002$
7785 reflections	$\Delta \rho_{max} = 0.88 \text{ e } \text{\AA}^{-3}$
453 parameters	$\Delta \rho_{\rm min} = -0.4 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Р methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2^2 . The threshold expression of $F^2^2 > \sigma(F^2^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.7392 (2)	0.39873 (11)	0.24469 (9)	0.0274 (5)	
C2	0.8606 (3)	0.43098 (18)	0.21823 (12)	0.0552 (8)	
H2A	0.9038	0.3968	0.1944	0.083*	
H2B	0.927	0.4469	0.2491	0.083*	
H2C	0.8296	0.4702	0.194	0.083*	
C3	0.7834 (3)	0.33610 (14)	0.27929 (11)	0.0495 (7)	
H3A	0.7038	0.3152	0.2955	0.074*	
H3B	0.8504	0.3495	0.3108	0.074*	
H3C	0.825	0.3028	0.2541	0.074*	
C4	0.6690 (3)	0.44959 (17)	0.28178 (13)	0.0575 (9)	
H4A	0.6457	0.4912	0.2592	0.086*	
H4B	0.7303	0.4617	0.3156	0.086*	
H4C	0.5853	0.4289	0.2946	0.086*	
C5	0.3733 (2)	0.51955 (11)	0.14177 (9)	0.0290 (5)	
C6	0.3849 (3)	0.58743 (12)	0.17434 (11)	0.0370 (6)	
H6A	0.3679	0.5797	0.215	0.056*	
H6B	0.3173	0.62	0.157	0.056*	
H6C	0.4769	0.6064	0.1721	0.056*	
C7	0.2310 (2)	0.48915 (13)	0.14482 (12)	0.0404 (6)	
H7A	0.2247	0.4457	0.1233	0.061*	
H7B	0.1627	0.5215	0.1278	0.061*	
H7C	0.214	0.4807	0.1853	0.061*	
C8	0.4073 (3)	0.52946 (13)	0.07947 (10)	0.0453 (7)	
H8A	0.501	0.5467	0.0788	0.068*	
H8B	0.3437	0.5628	0.0605	0.068*	
H8C	0.399	0.4853	0.059	0.068*	
C9	0.3271 (2)	0.31123 (11)	0.25002 (10)	0.0308 (5)	
C10	0.4065 (3)	0.24675 (12)	0.23669 (12)	0.0410 (6)	
H10A	0.4061	0.241	0.1947	0.062*	
H10B	0.3637	0.2066	0.2535	0.062*	
H10C	0.501	0.2511	0.2533	0.062*	
C11	0.1852 (3)	0.30822 (15)	0.22104 (16)	0.0566 (8)	
H11A	0.1349	0.3498	0.2305	0.085*	

H11B	0.1379	0.2676	0.2346	0.085*	
H11C	0.1901	0.3054	0.179	0.085*	
C12	0.3263 (4)	0.32048 (14)	0.31497 (12)	0.0596 (9)	
H12A	0.4206	0.324	0.332	0.089*	
H12B	0.2815	0.2808	0.3316	0.089*	
H12C	0.2764	0.3626	0.3232	0.089*	
C13	0.6504 (2)	0.19441 (11)	-0.02055 (8)	0.0220 (4)	
C14	0.5048 (2)	0.17276 (12)	-0.01138 (9)	0.0278 (5)	
H14A	0.5055	0.1269	0.0063	0.042*	
H14B	0.4509	0.1715	-0.0487	0.042*	
H14C	0.4641	0.2059	0.0142	0.042*	
C15	0.6525 (3)	0.26376 (13)	-0.05094 (10)	0.0355 (5)	
H15A	0.6078	0.2983	-0.028	0.053*	
H15B	0.6037	0.2601	-0.0893	0.053*	
H15C	0.7474	0.2775	-0.0551	0.053*	
C16	0.7220 (2)	0.13953 (12)	-0.05393 (9)	0.0312 (5)	
H16A	0.8165	0.1537	-0.0584	0.047*	
H16B	0.6737	0.1336	-0.0922	0.047*	
H16C	0.722	0.0959	-0.0327	0.047*	
C17	1.0884 (2)	0.11565 (12)	0.06581 (10)	0.0307 (5)	
C18	1.1722 (3)	0.17525 (16)	0.09261 (13)	0.0487 (7)	
H18A	1.1742	0.2129	0.0645	0.073*	
H18B	1.2657	0.1596	0.1033	0.073*	
H18C	1.1305	0.1915	0.1272	0.073*	
C19	1.0757 (3)	0.05792 (16)	0.10891 (13)	0.0529 (8)	
H19A	1.0353	0.0758	0.1433	0.079*	
H19B	1 1665	0.039	0 1201	0 079*	
H19C	1 017	0.0216	0.0913	0.079*	
C20	1.1515 (3)	0.08867 (14)	0.01263 (11)	0.0402 (6)	
H20A	1.0958	0.0507	-0.0041	0.06*	
H20B	1 2442	0.0721	0.0235	0.06*	
H20C	1 1 5 5 3	0.1257	-0.0159	0.06*	
C21	0 6584 (2)	0.04645 (11)	0 12376 (9)	0 0244 (4)	
C22	0.5906 (3)	-0.01292(12)	0.08980(10)	0.0355 (5)	
H22A	0.5358	0.0052	0.0561	0.053*	
H22B	0 5313	-0.0382	0 1145	0.053*	
H22C	0.661	-0.0439	0.0769	0.053*	
C23	0.7478(2)	0.02003(12)	0.17520 (9)	0.0318 (5)	
H23A	0.8164	-0.0117	0.1618	0.048*	
H23R	0.6911	-0.0042	0.2017	0.048*	
H23C	0.7939	0.0589	0.1954	0.048*	
C24	0.7557	0.09692(12)	0.14296 (10)	0.0333 (5)	
H24A	0.5957	0.1344	0.1644	0.0555 (5)	
H24R	0.4901	0.072	0.1679	0.05*	
H24C	0.497	0.1142	0.1089	0.05*	
C25	0.7600 (6)	0 4345 (3)	0.0605 (2)	0.0221 (14)*	506 (7)
H25	0.6719	0 4449	0.0724	0.046 (15)*	506 (7)
C26	0.8326 (6)	0 4849 (3)	0.0335 (3)	0.0240 (15)*	506 (7)
H26	0.7923	0 5291	0.0277	0.021 (11)* 0	506 (7)
1120	0.1745	0.0271	0.0411	0.021(11) 0	

C28	1.0182 (5)	0.4047 (2)	0.0324 (2)	0.0236 (12)*	0.506 (7)
H28	1.1098	0.3938	0.0252	0.028*	0.506 (7)
C29	0.9401 (5)	0.3570(2)	0.0589 (2)	0.0230 (11)*	0.506 (7)
H29	0.9762	0.3131	0.0696	0.028*	0.506 (7)
C25A	0.7814 (6)	0.4448 (3)	0.0718 (3)	0.0251 (15)*	0.494 (7)
H25A	0.7082	0.459	0.0936	0.038 (14)*	0.494 (7)
C26A	0.8515 (6)	0.4949 (3)	0.0451 (3)	0.0227 (15)*	0.494 (7)
H26A	0.8267	0.542	0.0472	0.033 (13)*	0.494 (7)
C28A	0.9814 (5)	0.4081 (2)	0.0044 (2)	0.0229 (12)*	0.494 (7)
H28A	1.0457	0.394	-0.0219	0.027*	0.494 (7)
C29A	0.9070 (5)	0.3604 (2)	0.0330 (2)	0.0231 (11)*	0.494 (7)
H29A	0.9263	0.3132	0.0265	0.028*	0.494 (7)
C27	0.9606 (2)	0.47356 (11)	0.01469 (10)	0.0292 (5)	
C30	0.0194 (3)	0.20285 (15)	0.37305 (14)	0.0499 (7)	
H30	-0.0696	0.2167	0.3585	0.06*	
C31	0.0754 (3)	0.23122 (17)	0.42372 (13)	0.0514 (7)	
H31	0.025	0.2639	0.4439	0.062*	
C32	0.2049 (3)	0.21219 (13)	0.44523 (13)	0.0435 (6)	
H32	0.2446	0.232	0.48	0.052*	
C33	0.2757 (3)	0.16450 (13)	0.41587 (13)	0.0457 (7)	
H33	0.3645	0.1509	0.4307	0.055*	
C34	0.2196 (3)	0.13602 (13)	0.36497 (12)	0.0419 (6)	
H34	0.2707	0.1034	0.3451	0.05*	
C35	0.0899 (3)	0.15424 (12)	0.34249 (11)	0.0388 (6)	
C36	0.0282 (4)	0.12362 (16)	0.28714 (12)	0.0587 (8)	
H36A	0.0996	0.1172	0.2603	0.088*	
H36B	-0.0422	0.1547	0.2698	0.088*	
H36C	-0.0131	0.079	0.2952	0.088*	
Cd1	0.681416 (15)	0.293346 (7)	0.114331 (6)	0.02303 (7)	
N1	0.80907 (19)	0.37450 (9)	0.06946 (8)	0.0289 (4)	
01	0.64763 (14)	0.37525 (8)	0.19596 (6)	0.0254 (3)	
O2	0.47662 (15)	0.47464 (7)	0.16934 (6)	0.0251 (3)	
O3	0.39076 (15)	0.37287 (7)	0.22922 (6)	0.0257 (3)	
O4	0.72132 (15)	0.20541 (6)	0.03641 (6)	0.0209 (3)	
05	0.95533 (14)	0.14222 (7)	0.04608 (6)	0.0232 (3)	
O6	0.74521 (15)	0.07929 (7)	0.08393 (6)	0.0239 (3)	
S 1	0.44513 (5)	0.33544 (3)	0.10046 (2)	0.02512 (12)	
S2	0.84466 (6)	0.20885 (3)	0.15666 (2)	0.02556 (13)	
Si1	0.48493 (5)	0.39138 (3)	0.17697 (2)	0.01919 (12)	
Si2	0.81719 (5)	0.15393 (3)	0.07939 (2)	0.01791 (12)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0249 (11)	0.0306 (11)	0.0255 (11)	0.0020 (9)	-0.0051 (9)	-0.0093 (9)
C2	0.0426 (16)	0.078 (2)	0.0428 (16)	-0.0268 (15)	-0.0084 (12)	-0.0029 (14)
C3	0.078 (2)	0.0430 (15)	0.0250 (13)	0.0088 (14)	-0.0131 (13)	-0.0032 (11)
C4	0.0446 (16)	0.070 (2)	0.0550 (18)	0.0200 (14)	-0.0185 (13)	-0.0426 (16)

C5	0.0336 (12)	0.0243 (11)	0.0287 (11)	0.0039 (9)	-0.0008 (9)	0.0041 (9)
C6	0.0467 (15)	0.0263 (12)	0.0387 (13)	0.0047 (10)	0.0072 (11)	0.0014 (10)
C7	0.0303 (13)	0.0367 (14)	0.0525 (15)	0.0050 (10)	-0.0079 (11)	0.0028 (11)
C8	0.0710 (19)	0.0338 (13)	0.0310(13)	0.0082 (13)	0.0041 (12)	0.0064 (10)
С9	0.0374 (13)	0.0212 (10)	0.0358 (12)	-0.0076 (9)	0.0160 (10)	-0.0020 (9)
C10	0.0484 (15)	0.0264 (12)	0.0499 (15)	0.0004 (11)	0.0147 (12)	0.0062 (11)
C11	0.0326 (15)	0.0422 (15)	0.096 (2)	-0.0107 (12)	0.0097 (15)	0.0036 (16)
C12	0.107 (3)	0.0355 (15)	0.0413 (16)	-0.0214 (16)	0.0364 (16)	-0.0031 (12)
C13	0.0222 (10)	0.0257 (10)	0.0173 (10)	-0.0011 (8)	-0.0030 (8)	0.0005 (8)
C14	0.0223 (11)	0.0341 (12)	0.0264 (11)	-0.0023 (9)	-0.0023 (8)	-0.0029 (9)
C15	0.0357 (13)	0.0368 (13)	0.0330 (13)	-0.0037 (10)	-0.0045 (10)	0.0125 (10)
C16	0.0306 (12)	0.0419 (13)	0.0211 (11)	0.0032 (10)	0.0018 (9)	-0.0071 (9)
C17	0.0181 (10)	0.0386 (13)	0.0355 (12)	0.0064 (9)	0.0028 (9)	0.0029 (10)
C18	0.0224 (13)	0.0686 (19)	0.0546 (17)	-0.0019 (12)	-0.0005 (11)	-0.0181 (15)
C19	0.0419 (16)	0.0657 (19)	0.0515 (17)	0.0263 (14)	0.0066 (13)	0.0242 (14)
C20	0.0296 (13)	0.0443 (14)	0.0480 (15)	0.0058 (11)	0.0120 (11)	-0.0040(12)
C21	0.0285 (11)	0.0243 (11)	0.0212 (10)	-0.0066 (9)	0.0072 (8)	0.0016 (8)
C22	0.0439(14)	0.0243(13)	0.0293(12)	-0.0179(11)	$0.0000 \pm (0)$	-0.0021(10)
C23	0.0388 (13)	0.0288 (12)	0.0280 (11)	-0.0030(10)	0.0047 (10)	0.0060 (9)
C24	0.0300(12)	0.0361(13)	0.0342(12)	-0.0011(10)	0.0124 (10)	0.0045(10)
C27	0.0262(11)	0.0274(11)	0.0353(12)	-0.0081(9)	0.0109 (9)	-0.0119(9)
C30	0.0202(11) 0.0332(15)	0.0565(18)	0.0591(12)	0.0001(9)	-0.0027(13)	0.0149(14)
C31	0.0352(15) 0.0401(16)	0.0587(18)	0.0571(18)	0.0010(12) 0.0004(14)	0.0027(13)	0.00119(11) 0.0002(15)
C32	0.0398(15)	0.0367(16) 0.0449(15)	0.0371(10) 0.0459(15)	-0.0157(12)	0.0019(13)	0.0002(13)
C33	0.0316(14)	0.0360(14)	0.0674(18)	-0.0092(11)	-0.0022(12)	0.00039(12) 0.0115(13)
C34	0.0316(14)	0.0314(13)	0.0584(17)	-0.0092(11)	0.0092(13)	0.0015(12)
C35	0.0330(11) 0.0425(14)	0.0324(13)	0.0301(17) 0.0404(14)	-0.0095(11)	-0.0021(12)	0.0030(12)
C36	0.0423(14)	0.0524(13) 0.0538(18)	0.0404(14) 0.0471(17)	-0.0127(16)	-0.0137(15)	0.0175(11)
Cd1	0.075(2)	0.0338(10) 0.02152(10)	0.0471(17) 0.02558(10)	-0.0127(10)	0.00542 (6)	-0.00431(6)
N1	0.02250(10) 0.0275(10)	0.02132(10) 0.0277(10)	0.02338(10)	-0.0012 (0)	0.0099(8)	-0.00431(0)
01	0.0275(10)	0.0277(10)	0.0328(10) 0.0250(7)	0.0033 (8)	-0.0007(6)	-0.0111(6)
02	0.0209(7)	0.0301(3)	0.0230(7)	-0.0021(0)	0.0007(0)	0.0111(0)
02	0.0208(8) 0.0312(8)	0.0203(7)	0.0275(8)	-0.0012(0)	0.0000(0)	-0.0018(0)
03	0.0312(8)	0.0197(7)	0.0273(8)	-0.0043(0)	-0.0012(0)	-0.0011(0)
04	0.0217(8)	0.0203(7)	0.0200(7)	0.0010(3)	-0.0019(0)	-0.0024(3)
05	0.0174(7)	0.0289(8)	0.0234(7)	0.0009(0)	0.0023(0)	0.0020(0)
00 S1	0.0293(8)	0.0218(7)	0.0214(7)	-0.0040(0)	0.0087(0)	-0.0004(0)
51	0.0229(3)	0.0292(3)	0.0232(3)	-0.0020(2)	0.0007(2)	-0.0060(2)
S2	0.0284(3)	0.0200(3)	0.0210(3)	-0.0005(2)	-0.0026(2)	-0.00446 (19)
511	0.0188(3)	0.0192(3)	0.0198(3)	-0.0014(2)	0.0034(2)	-0.0011(2)
512	0.01/4 (3)	0.0184 (3)	0.0180 (3)	-0.0008 (2)	0.0017(2)	0.0000 (2)
Geometric parar	neters (Å, °)					
C101		1.462 (2)	C21—C	06	1.451	(2)
C1—C3		1.503 (3)	C21—C	223	1.515	(3)
C1—C4		1.510 (3)	C21—C	222	1.521	(3)
C1—C2		1.516 (4)	C21—C	24	1.523	(3)

C22—H22A

C22—H22B

0.98

0.98

C2—H2A

С2—Н2В

0.98

0.98

C2—H2C	0.98	С22—Н22С	0.98
С3—НЗА	0.98	C23—H23A	0.98
С3—Н3В	0.98	C23—H23B	0.98
С3—НЗС	0.98	С23—Н23С	0.98
C4—H4A	0.98	C24—H24A	0.98
C4—H4B	0.98	C24—H24B	0.98
C4—H4C	0.98	C24—H24C	0.98
C5—O2	1.449 (3)	C25—N1	1.272 (5)
C5—C8	1.519 (3)	C25—C26	1.388 (8)
C5—C6	1.520 (3)	С25—Н25	0.95
C5—C7	1.522 (3)	C26—C27	1.378 (6)
С6—Н6А	0.98	C26—H26	0.95
С6—Н6В	0.98	C28—C29	1.377 (6)
С6—Н6С	0.98	C28—C27	1.497 (5)
С7—Н7А	0.98	C28—H28	0.95
С7—Н7В	0.98	C29—N1	1.369 (5)
С7—Н7С	0.98	С29—Н29	0.95
C8—H8A	0.98	C25A—C26A	1.365 (8)
C8—H8B	0.98	C25A—N1	1.395 (6)
C8—H8C	0.98	C25A—H25A	0.95
С9—ОЗ	1.450 (2)	C26A—C27	1.389 (6)
C9—C11	1.501 (4)	C26A—H26A	0.95
C9—C12	1.517 (3)	C28A—C27	1.313 (5)
C9—C10	1.519 (3)	C28A—C29A	1.380 (6)
C10—H10A	0.98	C28A—H28A	0.95
C10—H10B	0.98	C29A—N1	1.355 (5)
C10—H10C	0.98	С29А—Н29А	0.95
C11—H11A	0.98	C27—C27 ⁱ	1.482 (4)
C11—H11B	0.98	C30—C31	1.374 (4)
C11—H11C	0.98	C30—C35	1.395 (4)
C12—H12A	0.98	С30—Н30	0.95
C12—H12B	0.98	C31—C32	1.379 (4)
C12—H12C	0.98	C31—H31	0.95
C13—O4	1.461 (2)	C32—C33	1.370 (4)
C13—C14	1.519 (3)	С32—Н32	0.95
C13—C16	1.520 (3)	C33—C34	1.379 (4)
C13—C15	1.521 (3)	С33—Н33	0.95
C14—H14A	0.98	C34—C35	1.384 (4)
C14—H14B	0.98	С34—Н34	0.95
C14—H14C	0.98	C35—C36	1.500 (4)
С15—Н15А	0.98	С36—Н36А	0.98
C15—H15B	0.98	С36—Н36В	0.98
C15—H15C	0.98	С36—Н36С	0.98
C16—H16A	0.98	CdI—NI	2.3097 (18)
C16—H16B	0.98		2.4462 (5)
C16—H16C	0.98		2.4560 (5)
C17—O5	1.445 (3)		2.5137 (13)
C17_C19	1.514 (3)		2.5584 (13)
C1/C20	1.515 (3)	Ca1—S11	3.1428 (5)

C17—C18	1.525 (4)	Cd1—Si2	3.1514 (5)
C18—H18A	0.98	O1—Si1	1.6530 (15)
C18—H18B	0.98	O2—Sil	1.6286 (15)
C18—H18C	0.98	O3—Si1	1.6187 (14)
C19—H19A	0.98	O4—Si2	1.6538 (14)
C19—H19B	0.98	O5—Si2	1.6259 (14)
С19—Н19С	0.98	O6—Si2	1.6198 (14)
C20—H20A	0.98	S1—Si1	2.0916 (7)
C20—H20B	0.98	S2—Si2	2.0851 (7)
C20—H20C	0.98		
O1—C1—C3	107.18 (18)	H22B—C22—H22C	109.5
O1—C1—C4	111.37 (18)	С21—С23—Н23А	109.5
C3—C1—C4	110.6 (2)	C21—C23—H23B	109.5
O1—C1—C2	105.77 (18)	H23A—C23—H23B	109.5
C3—C1—C2	110.3 (2)	C21—C23—H23C	109.5
C4—C1—C2	111.5 (2)	H23A—C23—H23C	109.5
C1—C2—H2A	109.5	H23B—C23—H23C	109.5
C1—C2—H2B	109.5	C21—C24—H24A	109.5
H2A—C2—H2B	109.5	C21—C24—H24B	109.5
C1—C2—H2C	109.5	H24A—C24—H24B	109.5
H2A—C2—H2C	109.5	C21—C24—H24C	109.5
H2B—C2—H2C	109.5	H24A—C24—H24C	109.5
С1—С3—НЗА	109.5	H24B—C24—H24C	109.5
С1—С3—Н3В	109.5	N1—C25—C26	121.4 (5)
НЗА—СЗ—НЗВ	109.5	N1—C25—H25	119.3
C1—C3—H3C	109.5	С26—С25—Н25	119.3
НЗА—СЗ—НЗС	109.5	C27—C26—C25	122.7 (5)
НЗВ—СЗ—НЗС	109.5	С27—С26—Н26	118.6
C1—C4—H4A	109.5	С25—С26—Н26	118.6
C1—C4—H4B	109.5	C29—C28—C27	120.8 (4)
H4A—C4—H4B	109.5	C29—C28—H28	119.6
C1—C4—H4C	109.5	С27—С28—Н28	119.6
H4A—C4—H4C	109.5	N1-C29-C28	118.4 (4)
H4B—C4—H4C	109.5	N1—C29—H29	120.8
O2—C5—C8	107.42 (18)	С28—С29—Н29	120.8
O2—C5—C6	106.28 (18)	C26A—C25A—N1	125.0 (5)
C8—C5—C6	110.43 (19)	C26A—C25A—H25A	117.5
O2—C5—C7	111.03 (17)	N1—C25A—H25A	117.5
C8—C5—C7	111.2 (2)	C25A—C26A—C27	116.9 (5)
C6—C5—C7	110.3 (2)	C25A—C26A—H26A	121.6
С5—С6—Н6А	109.5	C27—C26A—H26A	121.6
С5—С6—Н6В	109.5	C27—C28A—C29A	117.9 (4)
H6A—C6—H6B	109.5	C27—C28A—H28A	121
С5—С6—Н6С	109.5	C29A—C28A—H28A	121
H6A—C6—H6C	109.5	N1—C29A—C28A	126.1 (4)
H6B—C6—H6C	109.5	N1—C29A—H29A	116.9
С5—С7—Н7А	109.5	С28А—С29А—Н29А	116.9
С5—С7—Н7В	109.5	C28A—C27—C26	111.7 (3)
H7A—C7—H7B	109.5	C28A—C27—C26A	121.1 (3)

С5—С7—Н7С	109.5	C28A—C27—C27 ⁱ	119.6 (3)
Н7А—С7—Н7С	109.5	C26—C27—C27 ⁱ	123.6 (3)
H7B—C7—H7C	109.5	C26A—C27—C27 ⁱ	118.4 (3)
С5—С8—Н8А	109.5	C26—C27—C28	113.0 (3)
С5—С8—Н8В	109.5	C26A—C27—C28	114.6 (3)
H8A—C8—H8B	109.5	C27 ⁱ —C27—C28	123.1 (3)
С5—С8—Н8С	109.5	C31—C30—C35	121.6 (3)
H8A—C8—H8C	109.5	С31—С30—Н30	119.2
H8B—C8—H8C	109.5	С35—С30—Н30	119.2
O3—C9—C11	106.9 (2)	C30—C31—C32	120.0 (3)
O3—C9—C12	105.50 (18)	C30—C31—H31	120
C11—C9—C12	112.0 (2)	C32—C31—H31	120
O3—C9—C10	111.91 (18)	C33—C32—C31	119.3 (3)
C11—C9—C10	110.4 (2)	С33—С32—Н32	120.4
C12—C9—C10	109.9 (2)	С31—С32—Н32	120.4
C9—C10—H10A	109.5	C32—C33—C34	120.8 (3)
С9—С10—Н10В	109.5	С32—С33—Н33	119.6
H10A—C10—H10B	109.5	С34—С33—Н33	119.6
С9—С10—Н10С	109.5	C33—C34—C35	121.0 (3)
H10A—C10—H10C	109.5	С33—С34—Н34	119.5
H10B-C10-H10C	109.5	С35—С34—Н34	119.5
С9—С11—Н11А	109.5	C34—C35—C30	117.3 (2)
С9—С11—Н11В	109.5	C34—C35—C36	121.4 (3)
H11A—C11—H11B	109.5	C30—C35—C36	121.3 (3)
C9—C11—H11C	109.5	С35—С36—Н36А	109.5
H11A—C11—H11C	109.5	С35—С36—Н36В	109.5
H11B-C11-H11C	109.5	H36A—C36—H36B	109.5
C9—C12—H12A	109.5	С35—С36—Н36С	109.5
C9—C12—H12B	109.5	H36A—C36—H36C	109.5
H12A—C12—H12B	109.5	H36B—C36—H36C	109.5
C9—C12—H12C	109.5	N1—Cd1—S2	106.15 (5)
H12A—C12—H12C	109.5	N1—Cd1—S1	104.61 (5)
H12B—C12—H12C	109.5	S2—Cd1—S1	149.156 (19)
O4—C13—C14	107.59 (16)	N1—Cd1—O1	90.80 (6)
O4—C13—C16	110.85 (16)	S2—Cd1—O1	104.03 (4)
C14—C13—C16	110.64 (18)	S1—Cd1—O1	73.18 (3)
O4—C13—C15	105.48 (16)	N1—Cd1—O4	91.19 (5)
C14—C13—C15	110.86 (18)	S2—Cd1—O4	72.67 (3)
C16—C13—C15	111.24 (19)	S1—Cd1—O4	109.03 (3)
C13—C14—H14A	109.5	O1—Cd1—O4	176.53 (5)
C13—C14—H14B	109.5	N1—Cd1—Si1	99.61 (5)
H14A—C14—H14B	109.5	S2—Cd1—Si1	128.835 (17)
C13—C14—H14C	109.5	S1—Cd1—Si1	41.656 (15)
H14A—C14—H14C	109.5	O1—Cd1—Si1	31.56 (3)
H14B—C14—H14C	109.5	O4—Cd1—Si1	150.45 (3)
C13—C15—H15A	109.5	N1—Cd1—Si2	102.52 (5)
C13—C15—H15B	109.5	S2—Cd1—Si2	41.386 (15)
H15A—C15—H15B	109.5	S1—Cd1—Si2	131.734 (16)

C13—C15—H15C	109.5	O1—Cd1—Si2	145.10 (3)
H15A—C15—H15C	109.5	O4—Cd1—Si2	31.51 (3)
H15B—C15—H15C	109.5	Si1—Cd1—Si2	157.776 (14)
C13—C16—H16A	109.5	C25—N1—C29A	111.1 (3)
C13—C16—H16B	109.5	C25—N1—C29	123.1 (3)
H16A—C16—H16B	109.5	C29A—N1—C25A	111.8 (3)
C13—C16—H16C	109.5	C29—N1—C25A	115.9 (3)
H16A—C16—H16C	109.5	C25—N1—Cd1	119.2 (3)
H16B—C16—H16C	109.5	C29A—N1—Cd1	125.3 (2)
O5—C17—C19	110.87 (18)	C29—N1—Cd1	117.4 (2)
O5—C17—C20	106.33 (18)	C25A—N1—Cd1	122.5 (3)
C19—C17—C20	109.9 (2)	C1—O1—Si1	132.12 (12)
O5—C17—C18	107.68 (19)	C1—O1—Cd1	132.14 (11)
C19—C17—C18	111.3 (2)	Si1—O1—Cd1	95.70 (6)
C20-C17-C18	110.7 (2)	C5—O2—Si1	132.37 (13)
C17—C18—H18A	109.5	C9—O3—Sil	135.81 (13)
C17—C18—H18B	109.5	C13—O4—Si2	131.77 (12)
H18A-C18-H18B	109.5	C13—O4—Cd1	130.78 (11)
C17—C18—H18C	109.5	Si2—O4—Cd1	95.15 (6)
H18A—C18—H18C	109.5	C17—O5—Si2	131.67 (13)
H18B—C18—H18C	109.5	C21—O6—Si2	135.64 (13)
С17—С19—Н19А	109.5	Si1—S1—Cd1	87.05 (2)
C17—C19—H19B	109.5	Si2—S2—Cd1	87.75 (2)
H19A—C19—H19B	109.5	O3—Si1—O2	105.98 (8)
C17—C19—H19C	109.5	O3—Si1—O1	110.67 (8)
H19A—C19—H19C	109.5	02—Si1—O1	104.87 (8)
H19B—C19—H19C	109.5	O3—Si1—S1	116.03 (6)
C17—C20—H20A	109.5	O2—Si1—S1	114.79 (6)
C17—C20—H20B	109.5	01—Si1—S1	103.98 (5)
H20A—C20—H20B	109.5	O3—Si1—Cd1	128.03 (6)
С17—С20—Н20С	109.5	O2—Si1—Cd1	125.39 (6)
H20A—C20—H20C	109.5	O1—Si1—Cd1	52.74 (5)
H20B—C20—H20C	109.5	S1—Si1—Cd1	51.299 (18)
O6—C21—C23	108.50 (17)	06—Si2—O5	106.78 (8)
O6—C21—C22	104.99 (16)	O6—Si2—O4	110.48 (8)
C23—C21—C22	110.78 (19)	O5—Si2—O4	104.76 (7)
O6—C21—C24	111.12 (17)	O6—Si2—S2	115.52 (6)
C23—C21—C24	110.98 (18)	O5—Si2—S2	114.94 (6)
C22—C21—C24	110.30 (19)	O4—Si2—S2	103.81 (5)
C21—C22—H22A	109.5	O6—Si2—Cd1	123.92 (5)
C21—C22—H22B	109.5	O5—Si2—Cd1	128.77 (6)
H22A—C22—H22B	109.5	O4—Si2—Cd1	53.34 (5)
C21—C22—H22C	109.5	S2—Si2—Cd1	50.863 (19)
H22A—C22—H22C	109.5		
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$.			

